
CCOOMMPPUUTTEERR NNEETTWWOPRKKSS

UNIT-2

aappppleiiccaattiioonn

kaayyeerrfeedback1correctionsivibha@pesu.pes.edu
VIBHA MASTI

Application Layer

• network applications

• social network
,
VoIP

, games , streaming , P2P file sharing , text,
web

,
real - time conferencing

• client-server
, peer-to-peer

• network core devices : do not run user apps

client-server Paradigm

↳ Server
• always on

•

permanent IP address

↳ Client
• static/ dynamic IP address

° contact servers
,
not clients

• HTTP
,
IMAP

,
FTP

Peer-to-peer Architecture

• no always - on server

• end systems communicate Carbitrary)

°

peers act as both clients and

servers

• self- scalability : new users bring
capacity and demands

•

peers intermittently connected and change IP addresses

•

peers request service from others peers and provide service

for other peers

•

eg: Skype ,
P2P file sharing

Process Communicating
•

process : program running on a host

• two processes on same host : inter - process communication
-

managed by OS

• different hosts : send/ receive messages across network

• client process : process that initiates communication

server process : process waiting to be contacted

Sockets

•

processes send / receive messages from sockets (to/from
transport layer)

• analogous to doors

• one socket on each side (client
, server)

• interface between application layer and transport layer

Addressing Processes

•

process sending message has an identifier (32-bit IP

address)

•

many processes on same host ; host IP address not

sufficient

• each process has a port number

• HTTP server : 80

mail server : 25

Application Layer Protocol

•

type of message : request , response

• message syntax : message fields

• message semantics : meaning of field information

• rules : how processes send/ receive messages

•

open protocols : defined in RFCs C. Request for comments) ,
protocol definition
-

eg: HTTP , SMTP

•

proprietary protocols: Skype

Transport services

• data integrity : 1001. reliability on transactions , files ; videos,
audio do not require checksum)

•

timing : delay for video chat, conferencing , gaming should

be low

•

throughput : real - time bit flow ; multimedia require certain

min to be effective
,
elastic use available throughput

• security : encryption

Transport service Requirement

TCP Service Transmission control Protocol

• flow control : agreement between sender and receiver such
that receiver buffer is not overwhelmed (handshake>

° congestion control : throttle sender in overwhelmed network

° reliable transport csendl receive)

° connection setup between client and server

UDP Service User Datagram Protocol

• unreliable data transfer

• no flow control
, congestion control

, timing , throughput
guarantee

° no connection setup

Defined in RFC 1945; RFC 2616

the WEB

• Tim Berners-Lee : CERN - invented
www.
collection of resources interconnected via hyperlinks

° Webpages consist of objects (stored on servers)

° objects : image , applet , audio , HTML etc
° objects : base HTML t images , audio etc

o URL : uniform resource locator

} sameURI : uniform resource identifier

• www.somesite.com/somepage/pic.gif
-

host name path name

HTTP PROTOCOL

° Application layer protocol for web

• client-server model

° Hypertext transfer Protocol

HTTP uses TCP

• client creates socket - initiates TCP connection to server

(port to - default)

• connects app and transport layers on client side

•

server accepts TCP connection from client

• server creates socket as doorway that connects app and

transport layers on server side

• HTTP request - response messages exchanged between browser

and server

• Tcp connection closed

http is stateless

• server does not retain information about past client

requests

• state maintenance is complex

non - persistent 6 Persistent

NON -PERSISTENT HTTP PERSISTENT HTTP

1. TCP connection opened 1. TCP connection opened

2. One object per TCP conn 2 Multiple objects per conn

3. TCP Conn closed 3 . TCP Conn closed

NON PERSISTENT

RTT : Response Time
time taken for a small packet to travel from client to

server and back (round trip time)

HTTP Response Time (per object)

° one RTT to initiate TCP Conn

° one RTT for HTTP req and

first few bytes of res to return

° object I file transmission time
response
time

→ 2 RTT -1 file transmission time

Issues

• 2 RTTS per object
. OS overhead for each TCP Conn

. solution : parallelism

PERSISTENT

° HTTP I - I

• server leaves connection open after sending response
° Only one RTT

HTTP specifications [RFC 1945; RFC 2616; RFC 7540]

HTTP

HTTP Request Message observe on wireshark

→ server

→ browser

→ persistent for 115 seconds

General format

POST
• form input
• body of request : user input

GET
• user data in URL field C? query)

HEAD
• request for only headers
• similar to get

PUT
• uploads new file to server
• replaces existing file on server

• content in body of req

HTTP Response message

jtatiy CODES

HTTPS

• HTTPS - secure

• encrypted communication

between browser and

server

• uses TLS - transport layer
security - based on SSL -

secure socket layer - to

encrypt normal http req- res

HTTP vs HTTPS

° HTTP -1 TLS → encrypted

• port : 443 for data communication (not so)

• public-private key cryptography
• SSL certificate : web server 's digital certificate issued by
third party CA

• SSL or TLS → SSL 4.0 is TLS 1-0

working of SSL

asymmetric
encryption

server

COOKIES

• Piece of data from specific website

• stored on user's computer

• Keep track of users

• HTTP / HTTPS is stateless

• cookies prevent incomplete
transactions from occurring

• maintains state

• sent by server to client in

response message

•

copy of cookie in db server; cookie stored in

browser history

four components

D Cookie header line of HTTP response message

2) cookie header line in next HTTP request message

3) cookie file kept on user 's host
, managed by user's

browser

4) Backend database at website

Uses of cookies

°

tracking user 's browsing history
•

remembering login details
•

shopping carts
° recommendations

WEB CACHING

°

Proxy servers

° User configures browser to point to a web cache

• Browser sends all http messages to cache

. If object in cache : cache returns object to client

• Else cache requests object from origin server, receives

object and returns object to client

° Proxy server acts as both client and server

° Cache typically installed by ISP

° Reduce response time for client request

• Reduce traffic on institution's access link

• Privacy : surf anonymously (IP address hidden)

CONDITIONAL GET

• Idea : not to send object if cache has up-to-date version

° Cache : specify date (time of cached copy in HTTP request
if - modified - since :<date>

• Server : response contains no object if cached copy is

up-to-date
HTTP11.0 304 Not Modified

DOMAIN NAME SYSTEM

• Domain name assigned to IP addresses

° Domain name resolution

• Distributed database implemented in hierarchy of many
name servers (tree)

• Application layer protocol : hosts , name servers communicate

to resolve names

• core internet function

• Runs over UDP : port 53

DNS services

° hostname to IP address translation

• host aliasing - host machine names canonical names) may
not be as mnemonic

www.abc . example .com → canonical host name

www. example .com s alias name

• load distribution : replicated web servers

DNS Not centralised

• Single point of failure
• Traffic volume
• Distant centralised database
• maintenance
• Scalability

DNS : Hierarchical Database

root

top level
domains

authoritative

DNS ZONES

e Groups contiguous domains and subdomains on the domain

tree

• Multiple DNS zones ; one
for each country

• Zone keeps records of who the authority is for each
subdomain

ZONE I

example.com

ZONE2
ZONE3 ZONE 4

Usa -example.com UK-example.com france. example.com

ZONE 5

Chicago boston nyc. example.com

HIERARCHY

Root Name servers

•

ICANN : Internet Corporation for Assigned Names and Numbers

manages root DNS domain

° 13 logical root name servers worldwide ; each server

replicated many times 113 organisations)

• DNSSEC -security

• Essential for functioning of internet

Top -Level Domain CTLD) servers

•

. COM
,
.net

,
.edu

, .org , • aero
,

• jobs , och , • Uk
,

• in
,
.fr

etc C country domains as well)

Authoritative DNS servers

•

organisation 's own DNS servers

• maintained by organisation or service provider

Local DNS Name server

• Not strictly belonging to hierarchy

• Each ISP has one (residential
, university etc)

• when host makes DNS query , query sent to local DNS

server (Airtel
,
BSNL etc)

• Has local cache of recent name - to - address pairs , but

may be outdated

• Acts as a proxy server and forwards query to

hierarchy

DNS Name Resolution

° Iterated query
- contacted server replies with name of

server to contact

° Recursive query
- burden of name resolution on contacted

name server

• Heavy load at upper levels of hierarchy

CACHING a UPDATING DNS RECORDS

• Two hosts query DNS server for same hostname
,
second

query
served cached mapping

• cache entries timeout after some time CTTL - time to live)

° TLD servers typically cached in local name servers ;
root

name server, not visited often

° If name host changes IP address
, may not be known

internet-wide until TTLS expire

• Update / notify mechanisms proposed IETF standard RFC 2136

relayl.bar.foo.com, 145.37.93.126, A

foo.com, dns.foo.com, NS

ibm.com, servereast.backup2.ibm.com, CNAME

example.com, mail.example.com, MX

DNS records

• Distributed database storing resource records CRR)

• RR format : (name
,
value

, type , t.tl) four tuple
t

TYPES
when resource to be

removed from cache

1. type -_ A

• name is hostname
• value is IP address
• standard hostname - to - IP address mapping
• ()

2. type = C.NAME
• name is alias name for some canonical Crean name

• www.ibm.com is really servereast . backup2. ibm.com
• value is canonical name
• ()

3. type -- NS
• name is domain leg : foo.com)
• value is hostname of authoritative name server that

knows to obtain IP addresses for hosts in this domain
• ()

4. type -- Mx
• value is canonical name of a mailserver associated with

alias hostname name

• ()

DNS Protocol Messages

• DNS query and reply messages (same format)

O 1

Type CA , MX
,

NS
,
CNAME)

Terminal

I :÷÷servers)

} 90 ask them

(name servers)

> answer

Insert Records into DNS

peer-to-peer application

° No always on server

•

Arbitrary end systems directly communicate

• Self - scalability

• more complex

• Peers intermittently connected and
constantly change IP address

•

eg : BitTorrent , VoIP cskype)

Q : How much time to distribute file (size F) from one server

to n peers ?

internet core

° bottlenecks : access networks

•

peer upload/ download capacity is limited resource

• distribution time : time taken to get a copy of file to

all N peers

File Distribution Time : Client - server

• server transmission : must sequentially transmit N file

copies

• time taken for one file = F)us
time taken for N files = NF / us

• client : each client must download file copy

• dmin = min download rate of any client

• min time = F / dmin

° time to distribute F Dcs > Max { Ntfs , Fannin}to N clients using
client - server approach y

linearly
increases w N

file Distribution Time : P2P

• server : must upload at least one copy CF Ius)

• each client downloads and uploads file

min client download time = Flamin

° clients : as aggregate must download NF bits

Max upload rate Climiting Max download rate)

Us t Sui

o time to distribute Dpzp > Max {÷ , #
in
, cN¥ui, }F to N clients

using P2P approach y
linearly

increases w N

Client (all peers) upload rate = u, F/u = 1
hour, us = 10u, dmin ≥ us

C- S vs P2P

BitTorrent
° P2P file distribution
° Files divided into 256 Kb chunks

° Peers in torrent send and receive file chunks

server

T

⇒ Tcp connection

%
a

trading
peers

6

• New peer joining torrent : has no chunks but accumulates

over time
•

Registers with tracker to get list of peers , connects to a

subset of peers (neighbours)
° While downloading , peer also uploads to other peers
• Churn : peers change neighbours for exchange
• Once peer has file entirely , it may leave cselfish) or remain

in torrent [altruistically?

Requesting chunks

• At any time , different peers have different subsets of

file chunks

• Periodically , one peer asks every other peer for the list of

chunks they have Cneighbours)

• Requests for missing chunks (rarest first) less available

in torrent

sending chunks : tit-for-tat

• One peer sends chunks to four peers currently sending
chunks to said peer at highest rate upload rate>

• Other peers are choked Cdo not receive chunks from

said peer)

° Top 4 reevaluated every 10 seconds

• Randomly select another peer every 30 seconds and

starts sending chunks to it (optimistically unchoke)

SOCKET PROGRAMMING

° TCP and UDP

• Socket: door between application process and end-to-end

transport protocol

° Client-server applications that communicate using sockets

° Process to process communication

Socket types
. UDP : unreliable datagram
• TCP : reliable

, byte- stream oriented

SOCKET PROGRAMMING WITH UDP

° No
'
connection

'

between client and server (no handshake)

° Sender explicitly attaches IP destination address and

port number to every packet

° Receiver extracts sender IP address and port number
from received packet

° Data maybe lost or received out of order

#!/usr/bin/python2

from socket import *

serverName = 'localhost'

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_DGRAM)

message = raw_input('Input lowercase sentence: ')

clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress = clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

#!/usr/bin/python2

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print "The server is ready to receive"

while 1:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.upper()

 serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPclient

create socket→

Python UDPserver

SOCKET PROGRAMMING WITH TCP

° Client- server handshake

• Server must be running and must have a socket that

welcomes client's contact

> Client contacts server :

- create TCP socket (IP address
, port no , of server process)

- client Tcp establishes connection to server TCP

• Server TCP creates new socket (different from welcome

socket) for server process to communicate with that

particular client

• Allows server to communicate with multiple clients

(new socket for each client)

• Source port numbers used to distinguish clients (client

does not pick port number at sender 's side ; automatically
assigned by OS)

° Reliable
, byte- stream transfer (pipe)

direct pipeline

#!/usr/bin/python2

from socket import *

serverName = 'localhost'

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName, serverPort))

sentence = raw_input('Input lowercase sentence: ')

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print 'From Server: ', modifiedSentence

clientSocket.close()

Python TCPclient

0

#!/usr/bin/python2

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind(('',serverPort))

serverSocket.listen(1)

print 'The server is ready to receive'

while 1:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence)

connectionSocket.close()

Python TCP server

other application - layer protocols

1. File Transfer Protocol CFTP)

-

exchange large files on internet TCP

- invoked from Cmd or gui
- allows to (delete

,
rename

,
move

, copy) files at a server
- data connection- port 20
. control connection - port 21

Control

data

2. Simple Mail Transfer Protocol (SMTP)

. email transmission
' connections secured with SSL (secure socket layer)
. messages stored and then forwarded to destination (relay)
- SMTP - port 25 of TCP

3 . Dynamic Host configuration Protocol (DHCP)

° assign IP addresses to computers in a network

dynamically
- IP addresses can change even when hosts are in network

(DHCP leases)

° DHCP server : port 67
DHCP client : port 68

° Client- server model
. Based on discovery , offer, request, ACK

• Subnet mask
,
DNS server address

,
default gateway

4
. Simple Network Management Protocol CSNMP)

-

exchange management information between network

devices

- basic component and functionalities
- SNMP Manager
- Managed Devices

- SNMP Agents
- MIB (Management Information Base)

Network Manager
system

5 . Telnet Ee SSH

. communicate with remote device
- used by network admins to access devices I manage
devices

' Telnet client g telnet server
- Telnet : port 23
- SSH : public (private encryption : TCP port 22

SUMMARY OF APPLICATION LAYER PROTOCOLS

